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Abstract
Robustness measures as introduced by Vidal and Tarrach (1999 Robustness of
entanglement Phys. Rev. A 59 141–55) quantify the extent to which entangled
states remain entangled under mixing. Analogously, we introduce here the
Schmidt robustness and the random Schmidt robustness. The latter notion
is closely related to the construction of Schmidt balls around the identity.
We analyse the situation for pure states and provide nontrivial upper and
lower bounds. Upper bounds to the random Schmidt-2 robustness allow
us to construct a particularly simple distillability criterion. We present two
conjectures, the first one is related to the radius of inner balls around the
identity in the convex set of Schmidt number n-states. We also conjecture a
class of optimal Schmidt witnesses for pure states.

PACS numbers: 03.67.Mn, 03.65.Ud

1. Introduction

There are two obvious ways of quantifying [1, 2] entanglement, operational and geometrical.
Operational entanglement measures include the distillable entanglement ED [3, 4] and the
entanglement cost EC [3, 5], and are directly related to the physical operations of extracting
entanglement from a state and constructing the state back from maximally entangled singlets.
Geometrical measures can loosely be described as those quantifying the distance from a
state to the set of separable states. Examples include the relative entropy of entanglement
[6, 7], the negativity [8], the GME [9], the best separable approximation [10, 11] and the
robustness measures [12–14]. Many of these geometrical measures can be cast directly
into the language of entanglement witnesses [15], as we will illustrate later for the random
robustness.

Entanglement witnesses were originally introduced as a way of ‘detecting’ entanglement.
The basic idea is that the set of separable states is convex. The following theorem gives a
geometrical characterization of the problem of determining whether a state ρ ∈ D is contained
in a certain compact and convex subset S ⊂ D:
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Theorem 1.1 ([16, 17]). Let S ⊂ D be a convex compact set of states and ρ ∈ D. If ρ /∈ S,
then there exists a Hermitian operator W such that Tr (Wρ) < 0 and Tr (Wσ) � 0 for all
σ ∈ S.

This theorem is an immediate consequence of basic theorems in functional analysis
[18, 19]. Namely, the Hahn–Banach theorem states that a convex set and a point lying outside
it can be separated by a hyperplane W , and the Riesz–Frechet representation theorem then
characterizes such hyperplanes. The hyperplanes W are commonly called witnesses [20]
(they witness states outside S). Clearly, we do not need all possible witnesses to characterize
S; it is enough to consider those witnesses tangent to S (a witness W is tangent to S if there
exists a ρ ∈ S such that Tr(Wρ) = 0). When S is the set of the separable states W is
called an entanglement witness. Here W is positive on separable states and negative on at
least one entangled state. From an entanglement witness W one can construct a geometrical
entanglement measure EM as follows [15]:

EM(ρ) = max
W∈M

[0,− Tr(ρW)], (1)

where M is some compact subset of the set of entanglement witnesses.
In this work we will focus on robustness measures. Let us therefore recall their definition.

We define the K-robustness of a state ρ, Rk(ρ) � 0 as the minimal value of R such that
1

1 + R
(ρ + Rρk) (2)

is separable, for some state ρk ∈ K . With this basic definition the robustness Rs(ρ) of
a state ρ as introduced by Vidal and Tarrach [14] equals the S-robustness, with S being
the set of separable states. The random robustness Rr(ρ) is defined as the 11-robustness
(K = {11}).1 Here 11 is the identity operator (the unnormalized totally mixed state). Finally
the generalized robustness [12, 13] is defined as the D-robustness, with D being the set of all
normalized states. Thus robustness measures measure how much mixing is required before a
state becomes separable. It is also clear that Rg � Rs � Rr .

Both the robustness and the generalized robustness are entanglement monotones. Recently
it has emerged [21, 22] that the generalized robustness has a very nice operational meaning as
the maximum percentuel increase an entangled state can provide in the fidelity of teleportation
of another state. It is easy to see from the definition that the random robustness is proportional to
the so-called witnessed entanglement [23], defined as maxW∈M [0,− Tr(ρW)] with Tr(W) = 1.
Also note that for a given dimension, the maximum random robustness over all entangled states
gives rise to a lower bound on the volume of separable states [14]. The following theorem
gives exact values for the robustness and the random robustness for pure states.

Theorem 1.2 ([12–14]). Let |ψ〉 = ∑
i ai |ii〉 be a pure bipartite state with ordered Schmidt

coefficients ai � ai+1. The robustness Rs of |ψ〉 is given by Rs(ψ) = ∑
i �=j aiaj =(∑

i ai

)2 − 1 and equals its generalized robustness. A separable state that washes out the
entanglement in ψ most quickly is given by

ρs = ρg = 1

Rs

∑
i �=j

aiaj |ij 〉〈ij |. (3)

The random robustness of ψ is given by Rr(ψ) = a1a2.

An alternative proof of this theorem can be obtained as a corollary of our results (see
section 2).
1 For simplicity we have chosen not to normalize 11 in the definition, in contrast to the original definition of random
robustness in [14].
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2. Robustness measures of the Schmidt number

In this section we will extend the notion of generalized robustness to generalized Schmidt
robustness.

Let us first recall the Schmidt decomposition [24, 25] of a pure state |ψ〉 ∈ H = HA⊗HB .
It can be shown that there always exist orthonormal basis states |iA〉 and |iB〉 for HA and HB ,
respectively such that |ψ〉 = ∑k

i=1 ai |iA〉|iB〉, where the k numbers ai are non-negative real
numbers satisfying

∑
i a

2
i = 1, known as the Schmidt coefficients. We call k the Schmidt

rank of ψ . For the sequel we make the convention that we order the Schmidt coefficients as
ai � ai+1 for all i.

This definition can be extended to mixed states [26] as follows. A bipartite mixed state ρ

acting on H = HA ⊗ HB is said to have a Schmidt number n if there exists a decomposition
of ρ = ∑

i pi |ψi〉〈ψi | with all vectors {|ψi〉} having the Schmidt rank at most n, and there
exists no such decomposition with all vectors having a Schmidt rank n − 1 or lower. This
definition coincides with the previous one in the case where ρ is a pure state. Separable states
have Schmidt number one, and entangled states have Schmidt number larger than one. It is
convenient to denote the set of all density operators as D and the set of density operators that
have Schmidt number n or less by Sn. Sets of increasing Schmidt number are embedded into
each other as S1 ⊂ S2 ⊂ · · · ⊂ Sd = D. The subsets Si are all convex and compact by
construction.

We call a Hermitian operator W a Schmidt witness of class n (for short n-SW) [27, 28] if
and only if

(i) Tr(Wσ) � 0 for all σ ∈ Sn−1;
(ii) there exists a ρ ∈ Sn such that Tr(Wρ) < 0.

The existence of a n-SW for a Schmidt number n state follows just from theorem 1.1.

Example 2.1 ([26, 27]). Let P+ be a maximally entangled state acting on a Hilbert space
H∼= C

d ⊗ C
d and consider the unnormalized isotropic states defined by

ρβ = 11 + βP+, with −1 � β � ∞. (4)

The isotropic state ρβ has a Schmidt number n if and only if

d((n − 1)d − 1)

d − (n − 1)
< β � d(nd − 1)

d − n
. (5)

The operators,

Wn = 11 − d/(n − 1)P+, (6)

are n-SW and detect in an optimal way the Schmidt number of the states ρβ .

In what follows we assume that all states act on a Hilbert space H∼= C
d ⊗ C

d .

2.1. Generalized Schmidt robustness

Analogously to the generalized robustness, the generalized Schmidt-n robustness of a state ρ,
Rgn(ρ) is defined as the minimal value of R such that

1

1 + R
(ρ + Rρgn) (7)

has a Schmidt number smaller than or equal to n, for some ρgn.
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Let us now analyse the generalized Schmidt robustness for pure states. In theorem 1.2 we
have seen that for a pure state |ψ〉 = ∑

i ai |ii〉 the state,

ρg = 1

Rg

∑
i �=j

aiaj |ij 〉〈ij |, (8)

erases most quickly the entanglement present in |ψ〉. For the maximally entangled state
|ψ+〉 = ∑

i
1√
d
|ii〉 this state is given by ρg = 1

d2−d
(11 − Z), with Z = ∑

i |ii〉〈ii|. It is very
plausible that this same state will also erase the Schmidt number in an optimal way. We were
able to prove this for the maximally entangled state:

Theorem 2.1 (generalized Schmidt robustness of the maximally entangled state). The state
defined by

ρ(β) = βρg + P+

1 + β
where ρg = 11 − Z

d2 − d
(9)

has the Schmidt number n for

d − n

n
� β <

d − n + 1

n − 1
. (10)

The generalized Schmidt-n robustness of the maximally entangled state P+ is given by
Rgn(P+) = d−n

n
.

Proof. Let S(β) be the Schmidt number of ρ(β) and let βn = d−n
n

. We first show that
S(βn) � n.

(i) We will give an explicit decomposition of the state ρ(βn) in terms of Schmidt rank n
states. Equivalently, we show how one can construct this state locally with the aid of Schmidt
rank n states. In what follows we will often omit normalization. Let us take a maximally
entangled n-level state

|ψS〉 = 1

n

n∑
i∈S

|ii〉, (11)

where S = {i1, . . . , in} is a subset of {1, . . . , d}. We can construct such a state in
(
d

n

)
possible

ways, and clearly all these states have the Schmidt number n. Now let us mix with equal
weight the corresponding states |ψS〉〈ψS |. Then for every i and j we will have

(
d−1
n−1

)
terms of

the form |ii〉〈ii| and
(
d−2
n−2

)
terms of the form |ii〉〈jj |, i �= j . Thus the resulting state will be

proportional to

(d − 1)Z + (n − 1)
∑
i �=j

|ii〉〈jj |. (12)

Therefore we have proven that the state (see [29] for n = 2)

K = Z +
d(n − 1)

d − n
P+ (13)

has the Schmidt number at most n. It turns out that we can transform this state in
the form (9) by applying a certain partial twirl operation. Consider the following twirl
operation [8, 30, 31]:∫

dU(U ⊗ U ∗)ρ(U ⊗ U ∗)†, (14)

which maps any state ρ into one of the form 11+ αP+ (an isotropic state). Here dU is the uniform
probability distribution on the unitary group U(d). Note that the twirl can be implemented
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locally, both parties need to implement only one random unitary. Remarkably, it has been
shown [32]2 that the integral can be written as a finite sum (for qubits this was first shown
in [3]). This will allow us to perform a partial twirl, just by considering a part of this finite
sum.

In the first step we apply the unitary transformation (T ⊗ T ∗)K(T ⊗ T ∗)†, with

T = 1√
d

d−1∑
j,k=0

e
i2πjk

d |j 〉〈k|, (15)

which is just the quantum Fourier transform. Since T is unitary, it acts as the identity on
P+ [30], while it acts on Z as

(T ⊗ T ∗)Z(T ⊗ T ∗)† = 1

d2

∑
a

∑
j,k,s,t

e
i2π(j−t+k−s)a

d |j 〉〈t | ⊗ |s〉〈k|. (16)

The terms of the form |jj 〉〈kk| for s = j and t = k will give a contribution P+, while the
|ij 〉〈ij | for i �= j (for j = t and k = s) will give a contribution of (11 − Z)/d. So that

K ′ = d(T ⊗ T ∗)K(T ⊗ T ∗)† = 11 − Z +
d(d − 1)n

d − n
P+ + L, (17)

where L are terms not of the form |ii〉〈jj | or |ij 〉〈ij |. Now these contributions can be easily
removed by repetitive application of the following mixing procedure:

K ′′ = 1
2U ⊗ U ∗K(U ⊗ U ∗)† + 1

2K ′. (18)

First U is chosen to act as U |k〉 = eiπδkl |k〉 for every l = 0, . . . , d − 1. This defines d mixing
procedures. Next U is taken to act as U |k〉 = eiπδkl/2|k〉 (another d mixing procedures). One
can readily check [32] that these operations do not affect terms |ii〉〈jj | or |ij 〉〈ij | but cancel
out L completely.

Thus S(βn) � n. Now for βn � β < βn−1, the state ρ(β) is a convex combination of
ρ(βn) and ρ(βn−1) and therefore S(β) � n.

(ii) For the second part, we generalize the trick introduced in [13]. For any state σ ,
suppose t is a positive number such that P+ + tσ has the Schmidt number n. The operators
Wn = 11 − d/nP+ witness the Schmidt number n + 1 (see example 2.1), so that we have

0 � Tr [(11 − d/nP+)(P+ + tσ )]

= 1 + t − d/n Tr [P+] − d/n Tr [P+σ ]

� −d − n

n
+ t. (19)

since Tr P+σ � 0. Thus t � βn, and for σ = ρg it follows that S(β) � n for βn � β < βn−1.
For general σ , it follows that Rgn � βn, but ρ(βn) = P+ + βnρg has the Schmidt number

n, so that Rgn(P+) = βn. �

Note that the states (9) constitute one of the very few examples of nontrivial one parameter
states for which the Schmidt number is known. To our knowledge, the only other example is
that of the isotropic states, example 2.1. This theorem allows us to present nontrivial bounds
to the generalized Schmidt robustness of arbitrary pure states.

2 In [32] the finite decomposition of the U ⊗ U twirl was given, but a similar decomposition can be deduced from it
for the U ⊗ U∗ twirl.
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Corollary 2.1 (lower and upper bounds for the generalized Schmidt robustness). The
generalized Schmidt-n robustness Rgn of a pure state |ψ〉 = ∑

i ai |ii〉 satisfies

1

n

(∑
i

ai

)2

− 1 � Rgn � Rg

d − n

(d − 1)n
, (20)

with Rg = ∑
i �=j aiaj = ( ∑

i ai

)2 − 1 the generalized robustness of ψ .

Proof. In theorem 2.1 we have seen that ρ = d−n
n

1
d2−d

(11−Z)+P+ has the Schmidt number n.
Performing the filtering operation (A ⊗ A)ρ(A ⊗ A)† we hence obtain a state with a Schmidt
number at most n (this is because local filtering cannot increase the Schmidt number of a state
[26]). If we take A = ∑

k

√
ak|k〉〈k| we obtain that

|ψ〉〈ψ | + Rg

d − n

(d − 1)n
ρg (21)

has the Schmidt number n. Here ρg = 1
Rg

∑
i �=j aiaj |ij 〉〈ij | as before. This gives the upper

bound. The lower bound can be readily proven using exactly the same trick as in part (ii) of
theorem 2.1. �

The lower and upper bounds only coincide in the case ψ is the maximally entangled state
or when n = 1. Note that the lower bound can be negative. The upper bound depends on the
dimension of the Hilbert space in which the state is embedded, and hence will in general not
match the value of the generalized Schmidt robustness.

2.2. Random Schmidt robustness

We define the random Schmidt-n robustness of a state ρ, Rrn(ρ) as the minimum value of R
such that

1

1 + R
(ρ + R11) (22)

has the Schmidt number n.
As we have seen from example 2.1 for ρ = P+ we have Rrn = (d − n)/[d(nd − 1)]. For

general pure states a (weak) upper bound to the random Schmidt robustness can be obtained
as follows. We know that

�n = (d − n)11 + (nd − 1)dP+ (23)

has the Schmidt number n. Local filtering (A ⊗ A)�n(A ⊗ A)† cannot increase the Schmidt
number. So that with A = ∑

k

√
ak|k〉〈k| we obtain

�′
n = (d − n)ρA ⊗ ρA + (nd − 1)|ψ〉〈ψ |, (24)

with ρA being the reduced density operator of |ψ〉〈ψ |, and because 11−ρA ⊗ρA is a separable
state we get as an upper bound for the random Schmidt robustness Rrn(ψ) � (d−n)/(nd−1).
The following theorem presents a nontrivial upper bound.

Theorem 2.2 (upper bound to the random Schmidt robustness). The random Schmidt-n
robustness Rrn of a pure state |ψ〉 = ∑

i ai |ii〉 satisfies

Rrn � Rr(d − n)

dn − 1
, (25)

with Rr = a1a2 the random robustness of ψ .
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Proof. In this proof, we work again with unnormalized states. Note that, if we add two
unnormalized Schmidt number n states together we end up with a state of at most a Schmidt
number n. Equivalently, this can be shown by mixing the normalized states with different
weights.

Analogously to the construction in theorem 2.1, let us take a maximally entangled n-level
state

|ψ〉S = 1

n

n∑
i∈S

ai |ii〉, (26)

where S = {i1, . . . , in} is a subset of {1, . . . , d}. Again, we can construct such a state in
(
d

n

)
possible ways, and mixing the corresponding (unnormalized) states |ψS〉〈ψS | together, we end
up with a state proportional to∑

i

a2
i |ii〉〈ii| +

(n − 1)

d − n
|ψ〉〈ψ |, (27)

which has at most a Schmidt number n. Now, in corollary 2.1 we have seen that the state

(d − 1)n

d − n
|ψ〉〈ψ | +

∑
i �=j

aiaj |ij 〉〈ij | (28)

has a Schmidt number at most n. Adding these two states together we find that

dn − 1

d − n
|ψ〉〈ψ | +

∑
i,j

aiaj |ij 〉〈ij | (29)

has a Schmidt number no more than n. Mixing this state with the separable state∑
i,j (a1a2 − ajaj )|ij 〉〈ij |, we obtain finally

dn − 1

(d − n)a1a2
|ψ〉〈ψ | + 11. (30)

�

Upper bounds to the random Schmidt-2 robustness are particularly useful, since they give
rise to the following distillability criterion:

Proposition 2.1 (Distillability criterion). Let ρ be an arbitrary bipartite state, such that ρTB

(the partial transposition [33] of ρ) has negative eigenvalues. Let |ψ〉 be the eigenvector
corresponding to a negative eigenvalue λ < 0 and let R̃r2(ψ) be an upper bound to its random
Schmidt-2 robustness. Then ρ is distillable if

λ < −R̃r2(ψ). (31)

Proof. From the definition, we have that

W = |ψ〉〈ψ | + R̃r2(ψ)11 (32)

has a Schmidt number two. Now if [29] Tr(WρTB ) < 0 then ρ is distillable. This can be
rewritten as

〈ψ |ρTB |ψ〉 + R̃r2(ψ) = λ + R̃r2(ψ) < 0. (33)

�

This proposition provides an important reason to find an exact analytical formula for
Rr2(ψ). Note that this distillability criterion only depends on the minimum eigenvalue and the
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corresponding eigenvector. It is easy to see that it is independent of another simple distillability
criterion, the reduction criterion. The reduction criterion [30, 34] says that when a state ρ

satisfies 11 ⊗ ρB − ρ �� 0 or ρA ⊗ 11 − ρ �� 0 then ρ distillable. Consider the following rather
extreme example:

ρ = 1

16




1 0 0 0 0 0 0 0 0
0 2 0 −1 0 0 0 0 0
0 0 2 0 0 0 2 0 0
0 −1 0 2 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 2 0 2 0
0 0 2 0 0 0 2 0 0
0 0 0 0 0 2 0 2 0
0 0 0 0 0 0 0 0 2




. (34)

It is easy to check that the reduction criterion is not useful here. The partial transposition ρTB

has an eigenvector |ψ〉 = 1√
3
(|00〉 + |11〉− |22〉) and the corresponding eigenvalue − 1

8 . Since

−Rr2(ψ) = − 1
15 > − 1

8 , ρ is distillable.
An unconditional distillability criterion, which does only depend on the minimum

eigenvalue of ρTB would follow from the following conjecture. Note that it is a generalization
of the fact that 11 + 2ρ is separable for all normalized states ρ [14].

Conjecture 2.1 (Schmidt balls around the identity). Consider the unnormalized mixture

ρβ = 11 + βρ, with − 1 � β � ∞, (35)

with ρ being an arbitrary normalized state acting on C
d ⊗ C

d . The state ρβ has a Schmidt
number at most k for all d and ρ when

β � 2(2k2 − 1). (36)

Pending on the proof of this conjecture, we have that ρ is distillable whenever ρTB has an
eigenvalue λ � −1/14. The conjectured value (36) can be obtained as follows. Starting from
the identity, it is natural to assume that we can go fastest to a higher Schmidt number by mixing
with some maximally entangled state. Taking ρ = P d ′

+ (the maximally entangled d ′-level state)
we have that β � d ′(kd ′ − 1)/(d ′ − k), which reaches its maximum for d ′ = √

k2 − 1 + k or
for integer d ′ = 2k. Substituting this expression in the expression for β gives the upper bound
from the conjecture. Thus it looks like, starting from the identity, we can get most quickly to
a Schmidt number k + 1 state by mixing with the maximally entangled state in 2k ⊗ 2k.

Lower bounds on the random Schmidt robustness of a pure state ψ can be obtained from
any Schmidt witness that detects ψ . Indeed, suppose Wn+1 is a normalized Schmidt number
n + 1 witness such that Tr(|ψ〉〈ψ |Wn+1) = −α, with α > 0. Then it is easy to see that
Rrn(ψ) � α

d2 . It follows that

d2Rrn(ψ) = min
T rWn+1=1

− Tr(|ψ〉〈ψ |Wn+1). (37)

Consider the Schmidt witnesses Wn+1 = 11 − d/nP+ from example 2.1. Performing the
filtering operation (A ⊗ B)Wn+1(A ⊗ B)† we obtain again a Schmidt number n + 1 witness.
Let us consider the particular case where A = B = ∑

k

√
ak|k〉〈k| diagonal and such that∑

i a
2
i = 1; we obtain

Wn+1 =
∑
ij

aiaj |ij 〉〈ij | − 1

n
|ψ〉〈ψ |. (38)
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Figure 1. Lower bounds on Rr2(ψ) in function of a2
1 , where |ψ〉 = a1|00〉 + a2(|11〉 + |22〉). The

graph was obtained numerically using the witnesses from conjecture 2.2. The best fit we found
was Rr2(ψ) = 0.15a0.85

1 (1 − a2
1)0.85.

The trace is given by
(∑

i ai

)2 − 1/n, and therefore the value of the normalized Wn+1 on an
arbitrary pure state |ψ〉 = ∑

i bi |ii〉 is

n
∑

i a
2
i b

2
i − (∑

i aibi

)2

n
(∑

i ai

)2 − 1
. (39)

For arbitrary pure states, this class of witnesses gives the highest value on lower bounds of
Rrn we have found; therefore we conjecture

Conjecture 2.2. The random Schmidt robustness Rrn of a pure state |ψ〉 = ∑
i bi |ii〉 is given

by

Rrn(ψ) = d2 max
ai

−n
∑

i a
2
i b

2
i − (∑

i aibi

)2

n
(∑

i ai

)2 − 1
, (40)

with
∑

i a
2
i = 1.

A first step in proving this conjecture would be to show that the class of witnesses
(A ⊗ B)Wn+1(A ⊗ B)† with A,B arbitrary matrices, is no more powerful than the class of
witnesses (A ⊗ A)Wn+1(A ⊗ A)† , with A diagonal. We have numerically verified this for
n = 2, 3 and d = 3, 4. Another open problem is the evaluation of the maximization in
equation (40). Ideally we would like to have an expression only in terms of the coefficients
bi . In figure 1 we have plotted the numerical maximization of equation (40) for a particular
set of pure states (see caption).

In conclusion, we have presented strong upper and lower bounds for the generalized and
random Schmidt robustness for pure states. The problem of finding exact values is very hard,
as in the end, one has to come up with an explicit convex decomposition in Schmidt rank n
states on the one hand, and on the other with a construction of optimal Schmidt witnesses.
We hope that our results may stimulate further work, especially in proving or disproving
conjecture 2.1.
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